Z-score, also known as a standard score, refers to the number of standard deviations above the mean for a data point. This value can be calculated using our z-score calculator. Continue reading to find out how to calculate the score and how to use our z-score table.
What is a z score table?
A z-score table shows you the area that is left of the given score under the standard distribution chart. The first column in the table contains a list of z-values, which are accurate to one decimal point. You can find the digit in the second place in your z-score by looking at the first row.
What is a z score chart?
A z score chart is a graphical representation of the relative position of an individual or group in a population. The z score tells you how far below the average value that person or group is, on a scale from -2 to 2. The higher the z score, the more abnormal or anomalous the data being compared is. A z score of 1 indicates that the data is exactly average, while a z score of -2 indicates that the data is two standard deviations below the average value.
We found that the z score of 62 in our example was 0.41. First, find z=0.4 in the first row. This will show you where to look. Find the 0.01 value in the first row. It will decide the row you should look at. The area beneath the standard distribution graph, to the left of the z-score, is equal to 0.6591. Remember that this graph covers an area of 1. We can thus say that the probability for a student scoring 62 points or less on the test, is 0.6591, or 65.91%.
You can also calculate the P-value. This is the probability that the score will exceed 62. It is 1 - 0.6591 = 0.34909, or 34.09%.
Calculator Z-score and six sigma method
99.7% can be observed in a process that follows a normal distribution. This distribution means can be located either to the left or right. Only 0.3% of all possible realizations will be within the three-sigma interval.
This principle can be extended by expanding the interval to six sigmas. 99.9999998027% percent of data points will fall within this range. You can expect to have 3.4 errors for every million realizations of a procedure if this principle is applied correctly.
These events could be classified as very unlikely. They can either be mishaps or accidents, on one side and streaks luck on the opposite. If you are performing a repetitive task (such as the production of a standard good), you might expect that serious errors will occur so often that they become insignificant.
This is why the quality system based upon the standard normal distribution, known as the 6 sigmas, was developed. Motorola created the system in the 1980s using statistical analysis to quantify and eliminate errors.
Six Sigma methodology has enabled the normal distribution to be used in three decades to improve processes in manufacturing, transactions, and both offices.
Can the z score be negative?
Yes! If your data point has a negative z-score, it means that it is lower than the average.
How do you read a Z score table?
A z-score table lets you determine the p-value or percentile of the data point, based upon its z scores. Follow these steps:
You can determine if your z-score has a negative or positive.
Use a negative table if the z-score is negative. If the z-score is positive, i.e. the value of the data point exceeds the mean, use a positive z-score table.
The first decimal (10th) is the z-score. Look in the leftmost column. For example, 2.1 will give you a 2.15 z score.
The z-score that matches the 2nd decimal (100th) can be found in the row at the top. For example, 0.05 is the HTML score for a z-score 2.15.
Find the p-value where the columns and rows are matched. A z score of 2.15 gives you a 98422.
Divide the p-value by 100 to get the percentile. A z score of 2.15 is in 98th%.
What is the z-score for the 95th percentageile?
A Z-score of means that your data point falls within the 95th percentile.
How do I find the p-value of z-score and calculate it?
A z score table is the easiest way to calculate the p-value. The actual calculation involves integrating an area under the curve from a regular distribution.
Z-table
A z table, also known by the name standard normal table or unit usual table, is a set of standard values that can be used to calculate the probability that a particular statistic falls below, between, or in the middle of the standard normal distribution.
This table is a right-tail z-table. There are many types and styles of z–tables. However, the right-tail is what is usually used to refer to a particular z–table. It is used for finding the area between z=0 and any positive value and referencing the area to the right of the standard deviation.
Z Table from Mean (0 to Z)
z | 0 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
0 | 0 | 0.00399 | 0.00798 | 0.01197 | 0.01595 | 0.01994 | 0.02392 | 0.0279 | 0.03188 | 0.03586 |
0.1 | 0.03983 | 0.0438 | 0.04776 | 0.05172 | 0.05567 | 0.05962 | 0.06356 | 0.06749 | 0.07142 | 0.07535 |
0.2 | 0.07926 | 0.08317 | 0.08706 | 0.09095 | 0.09483 | 0.09871 | 0.10257 | 0.10642 | 0.11026 | 0.11409 |
0.3 | 0.11791 | 0.12172 | 0.12552 | 0.1293 | 0.13307 | 0.13683 | 0.14058 | 0.14431 | 0.14803 | 0.15173 |
0.4 | 0.15542 | 0.1591 | 0.16276 | 0.1664 | 0.17003 | 0.17364 | 0.17724 | 0.18082 | 0.18439 | 0.18793 |
0.5 | 0.19146 | 0.19497 | 0.19847 | 0.20194 | 0.2054 | 0.20884 | 0.21226 | 0.21566 | 0.21904 | 0.2224 |
0.6 | 0.22575 | 0.22907 | 0.23237 | 0.23565 | 0.23891 | 0.24215 | 0.24537 | 0.24857 | 0.25175 | 0.2549 |
0.7 | 0.25804 | 0.26115 | 0.26424 | 0.2673 | 0.27035 | 0.27337 | 0.27637 | 0.27935 | 0.2823 | 0.28524 |
0.8 | 0.28814 | 0.29103 | 0.29389 | 0.29673 | 0.29955 | 0.30234 | 0.30511 | 0.30785 | 0.31057 | 0.31327 |
0.9 | 0.31594 | 0.31859 | 0.32121 | 0.32381 | 0.32639 | 0.32894 | 0.33147 | 0.33398 | 0.33646 | 0.33891 |
1 | 0.34134 | 0.34375 | 0.34614 | 0.34849 | 0.35083 | 0.35314 | 0.35543 | 0.35769 | 0.35993 | 0.36214 |
1.1 | 0.36433 | 0.3665 | 0.36864 | 0.37076 | 0.37286 | 0.37493 | 0.37698 | 0.379 | 0.381 | 0.38298 |
1.2 | 0.38493 | 0.38686 | 0.38877 | 0.39065 | 0.39251 | 0.39435 | 0.39617 | 0.39796 | 0.39973 | 0.40147 |
1.3 | 0.4032 | 0.4049 | 0.40658 | 0.40824 | 0.40988 | 0.41149 | 0.41308 | 0.41466 | 0.41621 | 0.41774 |
1.4 | 0.41924 | 0.42073 | 0.4222 | 0.42364 | 0.42507 | 0.42647 | 0.42785 | 0.42922 | 0.43056 | 0.43189 |
1.5 | 0.43319 | 0.43448 | 0.43574 | 0.43699 | 0.43822 | 0.43943 | 0.44062 | 0.44179 | 0.44295 | 0.44408 |
1.6 | 0.4452 | 0.4463 | 0.44738 | 0.44845 | 0.4495 | 0.45053 | 0.45154 | 0.45254 | 0.45352 | 0.45449 |
1.7 | 0.45543 | 0.45637 | 0.45728 | 0.45818 | 0.45907 | 0.45994 | 0.4608 | 0.46164 | 0.46246 | 0.46327 |
1.8 | 0.46407 | 0.46485 | 0.46562 | 0.46638 | 0.46712 | 0.46784 | 0.46856 | 0.46926 | 0.46995 | 0.47062 |
1.9 | 0.47128 | 0.47193 | 0.47257 | 0.4732 | 0.47381 | 0.47441 | 0.475 | 0.47558 | 0.47615 | 0.4767 |
2 | 0.47725 | 0.47778 | 0.47831 | 0.47882 | 0.47932 | 0.47982 | 0.4803 | 0.48077 | 0.48124 | 0.48169 |
2.1 | 0.48214 | 0.48257 | 0.483 | 0.48341 | 0.48382 | 0.48422 | 0.48461 | 0.485 | 0.48537 | 0.48574 |
2.2 | 0.4861 | 0.48645 | 0.48679 | 0.48713 | 0.48745 | 0.48778 | 0.48809 | 0.4884 | 0.4887 | 0.48899 |
2.3 | 0.48928 | 0.48956 | 0.48983 | 0.4901 | 0.49036 | 0.49061 | 0.49086 | 0.49111 | 0.49134 | 0.49158 |
2.4 | 0.4918 | 0.49202 | 0.49224 | 0.49245 | 0.49266 | 0.49286 | 0.49305 | 0.49324 | 0.49343 | 0.49361 |
2.5 | 0.49379 | 0.49396 | 0.49413 | 0.4943 | 0.49446 | 0.49461 | 0.49477 | 0.49492 | 0.49506 | 0.4952 |
2.6 | 0.49534 | 0.49547 | 0.4956 | 0.49573 | 0.49585 | 0.49598 | 0.49609 | 0.49621 | 0.49632 | 0.49643 |
2.7 | 0.49653 | 0.49664 | 0.49674 | 0.49683 | 0.49693 | 0.49702 | 0.49711 | 0.4972 | 0.49728 | 0.49736 |
2.8 | 0.49744 | 0.49752 | 0.4976 | 0.49767 | 0.49774 | 0.49781 | 0.49788 | 0.49795 | 0.49801 | 0.49807 |
2.9 | 0.49813 | 0.49819 | 0.49825 | 0.49831 | 0.49836 | 0.49841 | 0.49846 | 0.49851 | 0.49856 | 0.49861 |
3 | 0.49865 | 0.49869 | 0.49874 | 0.49878 | 0.49882 | 0.49886 | 0.49889 | 0.49893 | 0.49896 | 0.499 |
3.1 | 0.49903 | 0.49906 | 0.4991 | 0.49913 | 0.49916 | 0.49918 | 0.49921 | 0.49924 | 0.49926 | 0.49929 |
3.2 | 0.49931 | 0.49934 | 0.49936 | 0.49938 | 0.4994 | 0.49942 | 0.49944 | 0.49946 | 0.49948 | 0.4995 |
3.3 | 0.49952 | 0.49953 | 0.49955 | 0.49957 | 0.49958 | 0.4996 | 0.49961 | 0.49962 | 0.49964 | 0.49965 |
3.4 | 0.49966 | 0.49968 | 0.49969 | 0.4997 | 0.49971 | 0.49972 | 0.49973 | 0.49974 | 0.49975 | 0.49976 |
3.5 | 0.49977 | 0.49978 | 0.49978 | 0.49979 | 0.4998 | 0.49981 | 0.49981 | 0.49982 | 0.49983 | 0.49983 |
3.6 | 0.49984 | 0.49985 | 0.49985 | 0.49986 | 0.49986 | 0.49987 | 0.49987 | 0.49988 | 0.49988 | 0.49989 |
3.7 | 0.49989 | 0.4999 | 0.4999 | 0.4999 | 0.49991 | 0.49991 | 0.49992 | 0.49992 | 0.49992 | 0.49992 |
3.8 | 0.49993 | 0.49993 | 0.49993 | 0.49994 | 0.49994 | 0.49994 | 0.49994 | 0.49995 | 0.49995 | 0.49995 |
3.9 | 0.49995 | 0.49995 | 0.49996 | 0.49996 | 0.49996 | 0.49996 | 0.49996 | 0.49996 | 0.49997 | 0.49997 |
4 | 0.49997 | 0.49997 | 0.49997 | 0.49997 | 0.49997 | 0.49997 | 0.49998 | 0.49998 | 0.49998 | 0.49998 |
Z Score Calculator (z Value) English
Published: Tue Mar 08 2022
In category Mathematical calculators
Add Z Score Calculator (z Value) to your own website